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Abstract

A model of the equations of generalized magneto-thermoelasticity in a perfectly conducting medium is given. The
formulation is applied to generalizations, Lord–Shulman theory with one relaxation time and the Green–Lindsay the-
ory with two relaxation times, as well as to the coupled theory.

Laplace transforms and Fourier transforms techniques are used to get the solution. The resulting formulation is used
to solve a specific two-dimensional problem. The inverses of Fourier transforms are obtained analytically.

Laplace transforms are obtained using the complex inversion formula of the transform together with Fourier expan-
sion techniques.

Numerical results for the temperature distribution, thermal stress and displacement components are represented
graphically. A comparison was made with the results predicted by the three theories.
� 2005 Elsevier Ltd. All rights reserved.

Keywords: Elasticity; Thermoelasticity and magneto-thermoelasticity
1. Introduction

The classical uncoupled theory of thermoelasticity predicts two phenomena not compatible with physical
observations. First, the equation of heat conduction of this theory does not contain any elastic terms. Sec-
ond, the heat equation is of a parabolic type, predicting infinite speeds of propagation for heat waves.

Boit (1956) introduced the theory of coupled thermoelasticity to overcome the first shortcoming.
The governing equations for this theory are coupled, eliminating the first paradox of the classical theory.
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Nomenclature

k, l Lame�s constants
q density
CE specific heat at constant strain
t time
T absolute temperature
T0 reference temperature
rij components of stress tensor
eij components of strain tensor
ui components of displacement vector
k thermal conductivity
l0 magnetic permeability
e0 electric permeability

a20 ¼ l0H
2
0

q , Alfen velocity

c2 ¼ 1
l0e0

, light speed

a ¼ 1þ a20
c2

b20 ¼ kþ2l
q , speed of propagation of isothermal elastic waves

c20 ¼ b20 þ a20

c2 ¼
ffiffi
l
q

q
, velocity of transverse waves

b2 ¼ c2
0

c2
2

c21 ¼ c2
0

c2

a0 = ab2

g0 = qCE
k

s0 relaxation time
e dilation
c = (3k + 2l)at
e = c

qCE
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However, both theories share the second shortcoming since the heat equation for the coupled theory is also
parabolic.

Two generalizations to the coupled theory were introduced. The first is due to Lord and Shulman (1967)
who obtained a wave-type heat equation by postulating a new law of heat conduction to replace the clas-
sical Fourier�s law. Since the heat equation of this theory is of the wave-type, it automatically ensures finite
speeds of propagation for heat and elastic waves. The remaining governing equations for this theory,
namely, the equations of motion and constitutive relations, remain the same as those for the coupled
and the uncoupled theories.

The second generalization to the coupled theory of elasticity is what is known as the theory of thermo-
elasticity with two relaxation times or the theory of temperature-rate-dependent thermoelasticity. Müller
(1971) in a review of the thermodynamics of thermoelastic solids, proposed an entropy production inequal-
ity, with the help of which he considered restrictions on a class of constitutive equations. A generalization
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of this inequality was proposed by Green and Laws (1972). Green and Lindsay (1972) obtained an explicit
version of the constitutive equations. These equations were also obtained independently by S�uhubi (1973).
This theory contains two constants that act as relaxation times and modify all the equations of the coupled
theory, not only the heat equation. The classical Fourier�s law of heat conduction is not violated if the med-
ium under consideration has a center of symmetry. Erbay and S�uhubi (1986) studied wave propagation in a
cylinder. Ignaczak (1985) studied a strong discontinuity wave and obtained a decomposition theorem
(Ignaczak, 1978). Ezzat (1995) has also obtained the fundamental solution for this theory.

The foundations of magnetoelasticity were presented by Knopoff (1955) and Chadwick (1957) and devel-
oped by Kaliski and Petykiewicz (1959).

An increasing attention is being devoted to the interaction between magnetic field and strain field in a
thermoelastic solid due to its many applications in the fields of geophysics, plasma physics and related topics.
In all papers quoted above it was assumed that the interactions between the two fields take place by means of
the Lorentz forces appearing in the equations of motion and by means of a term entering Ohm�s law and
describing the electric field produced by the velocity of a material particle, moving in a magnetic field.

Many authors have considered the propagation of electromagneto-thermoelastic waves in an electrically
and thermally conducting solid. Paria (1962) discussed the propagation of plane magneto-thermoelastic
waves in an isotropic unbounded medium under the influence of a uniform thermal field and with a magnetic
field acting transversely to the direction of the propagation. Paria used the classical Fourier law of heat con-
duction, and neglected the electric displacement.Wilson (1963) extended Paria�s results by introducing a com-
ponent of themagnetic field parallel to the direction of the propagation. A comprehensive review of the earlier
contributions to the subject can be found in Paria (1967). Among the authors who considered the generalized
magneto-thermoelastic equations areNayfeh andNamat-Nasser (1972) who studied the propagation of plane
waves in a solid under the influence of an electromagnetic field. They obtained the governing equations in the
general case and the solution for some particular cases. Choudhuri (1984) extended these results to rotating
media. Sherief and Ezzat (1996) solved a thermal shock half-space problem using asymptotic expansions.
Lately, Ezzat (1997a,b) solved problems in a perfectly conducting medium, and Ezzat et al. (2000, 2001
and 2002) studied the propagation of plane waves in the same medium.

For this model, we solve a specific two-dimensional problem when the bounding surface of the half-space
is taken to be rigid in x direction and no displacement in y direction. A thermal shock acts on a band of
width 2a centered around the y-axis on the surface of the half space and is zero everywhere else. A magnetic
field with constant intensity acts normal to the bounding plane.
2. Formulation of the problem

We shall consider a thermoelastic medium of perfect conductivity permeated by an initial magnetic field
H � (0,0,H0). This produces an induced magnetic field h = (0,0,h) and induced electric field E = (E1,E2,0),
which satisfy the linear equations of electromagnetism and are valid for slowly moving media of perfect
electrically conductivity (r0 ! 1) (see e.g. Ezzat, 1997a,b):
curlh ¼ J þ e0 _E; ð1Þ
curlE ¼ �l0

_h; ð2Þ
E ¼ �l0ð _U ^ HÞ; ð3Þ
divh ¼ 0. ð4Þ
These equations are supplemented by the displacement equations of the theory of elasticity, taking into
account the Lorentz force
rij;j þ l0ðJ ^ HÞ ¼ q €Ui; ð5Þ
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and the heat conduction equation (see e.g. Ezzat and El-Karamany, 2002).
kT ;ii ¼ qCEð _T þ s0€T Þ þ cT 0ð _ekk þ ms0€ekkÞ � ðQþ ms0 _QÞ; ð6Þ

where m is constant.

The constitutive equation
rij ¼ kekkdij þ 2leij � c T
_

dij; ð7Þ

where
T
_

¼ T � T 0 þ m _T ; ð8Þ

and strain–displacement relations
eij ¼
1

2
ðUi;j þ Uj;iÞ. ð9Þ
Together with the previous equations, constitute a complete system of generalized magneto-thermoelastic-
ity for a medium with a perfect electric conductivity. Furthermore, it should be noted that the correspond-
ing expressions for generalized magneto-thermoelasticity with one relaxation time deduced by setting m = 1
and m = 0, while for generalized magneto-thermoelasticity with two relaxation times deduced by setting
m = 0, as well as for coupled theory by setting m = s0 = 0.

In these equations, a dot denotes differentiation with respect to time, while a comma denotes material
derivatives. The summation notation is used. We shall consider only the simplest case of the two-dimen-
sional problem. We assume that all causes producing the wave propagation is independent of the variable
z and that waves are propagated only in the xy-plane. Thus, all quantities appearing in Eqs. (1)–(9) are
independent of the variable z. Then the displacement vector U has components [u(x,y, t),v(x,y, t), 0].

Assume now that the initial conditions are homogeneous, then relation (1)–(3) yield (see e.g. Ezzat and
Othman, 2000).
J ¼ curlh� e0 _E; ð10Þ
E ¼ l0H 0ð� _v; _u; 0Þ; ð11Þ
h ¼ �H 0ð0; 0; eÞ. ð12Þ
Expressing the components of the vector J in terms of displacement, by eliminating from Eq. (1) the quan-
tities h and E and introducing them into displacement Eq. (5), Maxwell�s equations become
J ¼ curlh� c21 _E; ð13Þ
E ¼ ð� _v; _u; 0Þ; ð14Þ
h ¼ �ð0; 0; eÞ; ð15Þ
where e ¼ ou
ox þ ov

oy

� �
, the equations of motion have the form
b2 o
2u
ox2

þ o2u
oy2

þ ðb2 � 1Þ o2v
oxoy

� b2 oh
ox

þ t
o2h
oxot

� �
¼ a0€u; ð16Þ

b2 o
2v

oy2
þ o2v
ox2

þ ðb2 � 1Þ o2u
oxoy

� b2 oh
ox

þ t
o2h
oyot

� �
¼ a0€v; ð17Þ
in addition, the components of the stress are
rxx ¼ b2
0

ou
ox

� ðb2
0 � 2Þ ov

oy
� b2 hþ t

oh
ot

� �
; ð18aÞ
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ryy ¼ ðb2
0 � 2Þ ou

ox
� b2

0

ov
oy

� b2 hþ t
oh
ot

� �
; ð18bÞ

rzz ¼ ðb2
0 � 2Þ ou

ox
þ ov
oy

� �
� b2 hþ t

oh
ot

� �
; ð18cÞ

rxy ¼
ou
oy

þ ov
ox

� �
; ð18dÞ

rxz ¼ ryz ¼ 0. ð18eÞ
The heat equation
o2h
ox2

þ o2h
oy2

¼ _hþ s0€hþ eð _eþ ms0€eÞ � ðQþ ms0 _QÞ. ð19Þ
These equations will be supplemented with appropriate boundary conditions relevant to the particular
application under consideration as will be seen.

In the preceding equations, the following non-dimensional variables are used:
x ¼ c0g0x
0; y ¼ c0g0y

0; u ¼ c0g0u
0; v ¼ c0g0v

0; t ¼ c20g0t
0; s ¼ c20g0s

0;

J ¼ J 0

g0H 0c0
; h ¼ cðT 0 � T 0Þ

qc20
; Q ¼ qQ0

kT 0c20g
2
0

; h ¼ h0

H 0

; E ¼ E0

l0H 0c0
; rij ¼

r0
ij

l
;

where the dashed quantities denote dimensional variables and it was canceled in the equations for
convenient.
3. Formulation in the Laplace transform domain

We will apply Laplace transform defined as
�f ðsÞ ¼
Z 1

0

f ðtÞe�st dt;
hence, the above equations will take the forms
b2 o
2�u
ox2

þ o2�u
oy2

þ ðb2 � 1Þ o2�v
oxoy

� b2ð1þ tsÞ o
�h
ox

¼ a0s2�u; ð20Þ

b2 o
2�v

oy2
þ o2�v
ox2

þ ðb2 � 1Þ o2�u
oxoy

� b2ð1þ tsÞ o
�h
oy

¼ a0s2�v; ð21Þ

o2�h
ox2

þ o2�h
oy2

¼ ðsþ s2s0Þ�hþ eðsþ s2ms0Þ�e� ð1þ ms0sÞQ; ð22Þ

�rxx ¼ b2
0

o�u
ox

� ðb2
0 � 2Þ o�v

oy
� b2ð1þ tsÞ�h; ð23Þ

�ryy ¼ ðb2
0 � 2Þ o�u

ox
� b2

0

o�v
oy

� b2ð1þ tsÞ�h; ð24Þ

�rzz ¼ ðb2
0 � 2Þ o�u

ox
þ o�v
oy

� �
� b2ð1þ tsÞ�h; ð25Þ

�rxy ¼
o�u
oy

þ o�v
ox

� �
. ð26Þ
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4. Formulation in the Fourier transforms domain

We will apply Fourier transform defined as
f �ðqÞ ¼ 1ffiffiffiffiffiffi
2p

p
Z 1

�1
eiqyf ðyÞdy;
where
f ðyÞ ¼ 1ffiffiffiffiffiffi
2p

p
Z 1

�1
e�iqyf �ðqÞdq.
Then, the last equations will be in the following forms:
b2 o
2�u�

ox2
� ðq2 þ a0s2Þ�u� � iqðb2 � 1Þ o�v

�

ox
� b2ð1þ tsÞ o

�h
�

ox
¼ 0; ð27Þ

o2�v�

ox2
� ðq2b2 þ a0s2Þ�v� � iqðb2 � 1Þ o�u

�

ox
þ iqb2ð1þ tsÞ�h� ¼ 0; ð28Þ

o2�h
�

ox2
� ðq2 þ sþ s0s2Þ�h

� � esð1þ ms0sÞ
o�u�

ox
þ iqesð1þ ms0sÞ�v� þ ð1þ ms0sÞQ

� ¼ 0; ð29Þ

�r�
xx ¼ b2

0

o�u�

ox
þ iqðb2

0 � 2Þ�v� � b2ð1þ tsÞ�h�; ð30Þ

�r�
yy ¼ ðb2

0 � 2Þ o�u
�

ox
þ iqb2

0�v
� � b2ð1þ tsÞ�h�; ð31Þ

�r�
zz ¼ ðb2

0 � 2Þ o�u
ox

� iq�v�
� �

� b2ð1þ tsÞ�h�; ð32Þ

�rxy ¼
o�u
oy

þ o�v
ox

� �
. ð33Þ
Now, we will apply the following Fourier transforms without heat source:
�u�cðp; q; sÞ ¼
ffiffiffi
2

p

r Z 1

0

�u�ðx; q; sÞ cos pxdx;

�v�s ðp; q; sÞ ¼
ffiffiffi
2

p

r Z 1

0

�v�ðx; q; sÞ sin pxdx;

�h
�
s ðp; q; sÞ ¼

ffiffiffi
2

p

r Z 1

0

�h
�ðx; q; sÞ sin pxdx;
where
�u�ðx; q; sÞ ¼
ffiffiffi
2

p

r Z 1

0

�u�cðp; q; sÞ cos pxdp;

�v�ðx; q; sÞ ¼
ffiffiffi
2

p

r Z 1

0

�v�s ðp; q; sÞ sin pxdp;

�h
�ðx; q; sÞ ¼

ffiffiffi
2

p

r Z 1

0

�h
�
s ðp; q; sÞ sin pxdp.
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Hence, we obtain
½p2b2 þ a0s2 þ q2��u�c þ iqpðb2 � 1Þ�v�s þ b2pð1þ tsÞ�h�s

¼
ffiffiffi
2

p

r
½�b2�u0�0 þ iqðb2 � 1Þ�v�0 þ b2ð1þ tsÞ�h�0�; ð34Þ

iqpðb2 � 1Þ�u�c þ ½p2 þ a0s2 þ q2b2��v�s þ ib2qð1þ tsÞ�h�s ¼ �
ffiffiffi
2

p

r
p�v�0; ð35Þ

esð1þ ms0sÞp�u�c þ iqesð1þ ms0sÞ�v�s � ½p2 þ q2 þ sþ s0s2��h
�
s ¼ �

ffiffiffi
2

p

r
p�h

�
0; ð36Þ
where
�u0�0 ¼ o�u�ð0; q; sÞ
ox

; �v�0 ¼ �v�ð0; q; sÞ and �h
�
0 ¼ �#

�ð0; q; sÞ.
Solving the above equations, we get
�u�c ¼
ffiffiffi
2

p

r
u1

p2 þ p21
þ u2
p2 þ p22

þ u3
p2 þ p23

� �
; ð37Þ
where
u1 ¼
l11p41 � l12p21 þ l13
ðp22 � p21Þðp23 � p21Þ

;

u2 ¼
l11p42 � l12p22 þ l13
ðp21 � p22Þðp23 � p22Þ

;

u3 ¼
l11p43 � l12p23 þ l13
ðp21 � p23Þðp22 � p23Þ

;

l11 ¼ ��u0�0 ;

l12 ¼ �ða0s2 þ b2q2 þ d3 þ q2Þ�u0�0 þ iq
a0s2ðb2 � 1Þ

b2
þ ðb2q2 � d1d2es� q2Þ

� �
�v�0

þ d1ðb2q2 þ d3Þ�h
�
0;

l13 ¼ �ða0s2ðd3 þ qÞ þ b2q2ðd1d2esþ d3 þ q2ÞÞ�u0�0 þ iqðb2 � 1Þ
b2

ða0s2ðd3 þ qÞ

þ b2q2ðd1d2esþ d3 þ q2ÞÞ�v�0 þ d1ða0s2ðd3 þ qÞ þ b2q2ðd1d2esþ d3 þ q2ÞÞ�h�0;

�v�s ¼
ffiffiffi
2

p

r
v1p

p2 þ p21
þ v2p
p2 þ p221

þ v3p
p2 þ p23

� �
;

ð38Þ
where
v1 ¼
l21p41 � l22p21 þ l23
ðp22 � p21Þðp23 � p21Þ

;

v2 ¼
l21p42 � l22p22 þ l23
ðp21 � p22Þðp23 � p22Þ

;

v3 ¼
l21p43 � l22p23 þ l23
ðp21 � p23Þðp22 � p23Þ

;
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l21 ¼ �v�0;

l22 ¼ iqð1� b2Þ�u0�0 þ a0s2

b2
� ðb2q2 � d1d2es� d3 � 3q2Þ

� �
�v�0 þ iqd1�h

�
0;

l23 ¼ �iqðb2ðd1d2esþ d3 þ q2Þ � d3 � q2Þ�u0�0

þ a0s2ðd3 þ q2Þ
b2

� q2ðb2ðd1d2esþ d3 þ q2Þ � d1d2es� 2ðd3 þ q2ÞÞ
� �

�v�0

þ ðia0s2qd1 þ iqd1ðb2ðd1d2esþ d3 þ q2Þ � d3ÞÞ�h
�
0;
and
�h
�
s ¼

ffiffiffi
2

p

r
h1p

p2 þ p21
þ h2p
p2 þ p22

þ h3p
p2 þ p23

� �
; ð39Þ
where
h1 ¼
l31p41 � l32p21 þ l33
ðp22 � p21Þðp23 � p21Þ

;

h2 ¼
l31p42 � l32p22 þ l33
ðp21 � p22Þðp23 � p22Þ

;

h3 ¼
l31p43 � l32p23 þ l33
ðp21 � p23Þðp22 � p23Þ

;

l31 ¼ �h
�
0;

l32 ¼ �esd2�u0�0 þ iesd2q�v�0 þ
a0s2ðb2 þ 1Þ

b2
þ ðd1d2esþ 2q2Þ

� �
�h
�
0;

l33 ¼ �d2esða0s2 þ q2Þ�u0�0 þ iqsed2ða0s2 þ q2Þ�v�0 þ
1

b2
ða20s4 þ a0s2ðb2ðd1d2esþ q2Þ þ q2ÞÞ�h�0.
We have already used the following parameters:
p21 ¼ a0s2 þ q2;

p22 ¼
1

2
½Lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � 4LM

p
�;

p23 ¼
1

2
½L�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � 4LM

p
�;

L ¼ a0s2

b2
þ ðd1d2esþ d3 þ 2q2Þ

� �
;

M ¼ a0s2ðd3 þ q2Þ
b2

þ q2ðd1d2esþ d3 þ q2Þ
� �

;

d1 ¼ 1þ ts; d2 ¼ 1þ s0ms and d3 ¼ sþ s0s2.
Now, by using the following integrals:
Z 1

0

cos px

p2 þ k2
dp ¼ p

2

e�kx

k
and

Z 1

0

p sin px

p2 þ k2
dp ¼ p

2
e�kx;



M.A. Ezzat, H.M. Youssef / International Journal of Solids and Structures 42 (2005) 6319–6334 6327
we get
�u�ðx; q; sÞ ¼ u1
p1

e�p1x þ u2
p2

e�p2x þ u3
p3

e�p3x; ð40Þ

�v�ðx; q; sÞ ¼ v1e�p1x þ v2e�p2x þ v3e�p3x; ð41Þ
�h
�ðx; q; sÞ ¼ h1e

�p1x þ h2e
�p2x þ h3e

�p3x. ð42Þ
We can get the constitutive equations as following:
�r�
xxðx; q; sÞ ¼ �

X3

j¼1

½b2
0uj þ iqðb2

0 � 2Þvj þ b2d1hj�e�pjx; ð43Þ

�r�
yyðx; q; sÞ ¼ �

X3

j¼1

½ðb2
0 � 2Þuj � iqb2

0vj þ b2d1hj�e�pjx; ð44Þ

�r�
zzðx; q; sÞ ¼ �

X3

j¼1

½ðb2
0 � 2Þuj þ iqðb2

0 � 2Þvj þ b2d1hj�e�pjx; ð45Þ

�r�
xyðx; q; sÞ ¼ �

X3

i¼1

iq
pj
uj þ pjvj

" #
e�pjx. ð46Þ
5. Application

We consider the problem of a half-space, which is defined in the region X defined as following:
X ¼ fðx; y; zÞ : 0 6 x < 1;�1 < y < 1;�1 < z < 1g.
We consider a thermal chock in the side of the region at x = 0, then
hð0; y; tÞ ¼ HðtÞF ðyÞ:
After applying Laplace and Fourier transforms as we defined before, we obtain
�h
�
0ð0; q; sÞ ¼

F �

s
. ð47Þ
We consider the body satisfies the following mechanical conditions:
vð0; y; tÞ ¼ 0; and u0ð0; y; tÞ ¼ 0.
After applying Laplace and Fourier transforms, we obtain
�v�0 ¼ �v�ð0; q; sÞ ¼ 0; ð48Þ

�u0�0 ¼ o�u�ð0; q; sÞ
ox

¼ 0. ð49Þ
That completes the solution of the Eqs. (40)–(42) in the transformed domain as following:
�u�ðx; q; sÞ ¼ u10
p1

e�p1x þ u20
p2

e�p2x þ u30
p3

e�p3x; ð50Þ
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where
u10 ¼
l110p41 � l120p21 þ l130
ðp22 � p21Þðp23 � p21Þ

;

u20 ¼
l110p42 � l120p22 þ l130
ðp21 � p22Þðp23 � p22Þ

;

u30 ¼
l110p43 � l120p23 þ l130
ðp21 � p23Þðp22 � p23Þ

;

l110 ¼ 0;

l120 ¼ d1ðb2q2 þ d3Þ
F �

s
;

l130 ¼ d1ða0s2ðd3 þ qÞ þ b2q2ðd1d2esþ d3 þ q2ÞÞ F
�

s
;

�v�ðx; q; sÞ ¼ v10e�p1x þ v20e�p2x þ v30e�p3x;

ð51Þ
where
v10 ¼
l210p41 � l220p21 þ l230
ðp22 � p21Þðp23 � p21Þ

;

v20 ¼
l210p42 � l220p22 þ l230
ðp21 � p22Þðp23 � p22Þ

;

v30 ¼
l210p43 � l220p23 þ l230
ðp21 � p23Þðp22 � p23Þ

;

l210 ¼ 0;

l220 ¼ iqd1
F �

s
;

l230 ¼ ðia0s2qd1 þ iqd1ðb2ðd1d2esþ d3 þ q2Þ � d3ÞÞ
F �

s
;

�h
�ðx; q; sÞ ¼ h10e

�p1x þ h20e
�p2x þ h30e

�p3x;

ð52Þ

h10 ¼
l310p41 � l320p21 þ l330
ðp22 � p21Þðp23 � p21Þ

;

h20 ¼
l310p42 � l320p22 þ l330
ðp21 � p22Þðp23 � p22Þ

;

h30 ¼
l310p43 � l320p23 þ l330
ðp21 � p23Þðp22 � p23Þ

;

l310 ¼
F �

s
;

l320 ¼
a0s2ðb2 þ 1Þ

b2
þ ðd1d2esþ 2q2Þ

� �
F �

s
;

l330 ¼ ða20s4 þ a0s2ðb2ðd1d2esþ q2Þ þ q2ÞÞ F
�

b2s
.
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The constitutive equations take the forms
�r�
xxðx; q; sÞ ¼ �

X3

j¼1

½b2
0uj0 þ iqðb2

0 � 2Þvj0 þ b2d1hj0�e�pjx; ð53Þ

�r�
yyðx; q; sÞ ¼ �

X3

j¼1

½ðb2
0 � 2Þuj0 � iqb2

0vj0 þ b2d1hj0�e�pjx; ð54Þ

�r�
zzðx; q; sÞ ¼ �

X3

i¼1

½ðb2
0 � 2Þuj0 þ iqðb2

0 � 2Þvj0 þ b2d1hj0�e�pjx; ð55Þ

�r�
xyðx; q; sÞ ¼ �

X3

j¼1

iq
pj
uj0 þ pjvj0

" #
e�pjx. ð56Þ
6. Inversion of the Laplace transform

To obtain the solution of the problem in the physical domain (x,y, t), we have to invert the iterated trans-
forms in Eqs. (50)–(56).

These expressions can be formally expressed as functions of x and the parameter of the Fourier and
Laplace transforms q and s of the form �f

�ðx; q; sÞ (see e.g. Honig and Hirdes, 1984).
First, we invert the Fourier transform using the inversion formula given previously. This gives the

Laplace transform expression �f ðx; y; sÞ of the function f(x,y, t) as
�f ðx; y; sÞ ¼ 1ffiffiffiffiffiffi
2p

p
Z 1

�1
e�iqyf ðx; q; sÞdq

¼
ffiffiffi
2

p

r Z 1

0

ðcosðqyÞfe þ i sinðqyÞfoÞdq;
where fe and fo denote the even and the odd parts of the function �f
�ðx; q; sÞ respectively.

We shall now outline the numerical inversion method used to find the solution in the physical domain.
For fixed values of x, y, and q the function inside braces in the last integral can be considered as a Laplace
transform �gðsÞ of some function g(t).

The inversion formula for the Laplace transform can be written as
gðtÞ ¼ 1

2pi

Z cþi1

c�i1
est�gðsÞds;
where c is an arbitrary real number greater than all the parts of the singularities �gðsÞ. Taking s = c + iy, the
above integral takes the form
gðtÞ ¼ ect

2p

Z 1

�1
eity�gðcþ iyÞdy:
Expanding the function h(t) = exp(�ct)g(t) in a Fourier series in the interval [0, 2L], we obtain the approx-
imate formula.
gðtÞ ¼ g1ðtÞ þ ED;
where
g1ðtÞ ¼
1

2
c0 þ

X1
k¼1

ck for 0 6 t 6 2L; ð57Þ
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and
ck ¼
ect

L
Re½eikpt=Lgðcþ ikpt=LÞ�. ð58Þ
ED, the discretization error, can be made arbitrary small by choosing c large enough.
Since the infinite series in Eq. (57) can be summed up to finite number N of terms, the approximate value

of g(t) becomes
gN ðtÞ ¼
1

2
c0 þ

XN
k¼1

ck for 0 6 t 6 2L. ð59Þ
Using the above formula to evaluate g(t), we introduce a truncation error ET which, must be added to the
discretization error to produce the total approximation error.

Two methods are used to reduce the total error. First the ‘‘Korrecktur’’ method is used to reduce the
discretization error. Next, the e algorithm is used to reduce the truncation error and hence to accelerate
convergence.

The Korrecktur method uses the following formula to evaluate the function g(t):
gðtÞ ¼ g1ðtÞ � e2cLg1ð2Lþ tÞ þ E0
D;
where the discretization error jE0
Dj � jEDj. Thus, the approximate value of g(t) becomes
gNKðtÞ ¼ gN ðtÞ � e�2cLgN 0 ð2Lþ tÞ. ð60Þ

N 0 is an integer such that N 0 < N.

We shall now describe the e-algorithm that is used to accelerate the convergence of the series in Eq. (59).
Let N = 2q + 1 where q is a natural number, and let
sm ¼
Xm
k¼1

ck
be the sequence of partial sums of Eq. (59). We define the e-sequence by
eo;m ¼ 0 e1;m ¼ 0;
and
epþ1;m ¼ ep�1;mþ1 þ 1

ep;mþ1 � ep;m
; p ¼ 1; 2; 3; . . .
it can be shown that the sequence e1,1, e3,1, e5,1, . . . , eN,1, converges to f(x,y, t) + ED � c0/2 faster than the se-
quence of partial sums sm (m = 1,2,3 , . . .).

The actual procedure used to invert the Laplace transform consists of using Eq. (60) together with the
e-algorithm. The values of c and L are chosen according to the criteria outlined in Honig and Hirdes
(1984).
7. Numerical results

The function F(y) representing the thermal shock was taken as F(y) = H(a � jyj) which gives
F �ðqÞ ¼
ffiffiffi
2

p

r
sinðqaÞ

q
;

where H denotes Heaviside step function.
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The copper material was taken for chosen purpose of numerical evaluations. The constant of the prob-
lem were taken as in Ezzat (2004):
k ¼ 386 N=K s; aT ¼ 1.78� 10�5 K�1; CE ¼ 383.1 m2=K s2; g0 ¼ 8886.73 m=s2;

l ¼ 3.86� 1010 N=m2; k ¼ 7.76� 1010 N=m2; c1 ¼ 1.39� 10�5; q ¼ 8954 kg=m3;

e0 ¼ ð10Þ�9
=ð36pÞ C2=N m2; l0 ¼ 4p� 10�7 N m s2=C2; H 0 ¼ 1 C=m s; s0 ¼ 0.02;

t ¼ 0.03; T 0 ¼ 293 K; b2
0 ¼ 2.01; b2 ¼ 3.5; e ¼ 0.0168; a ¼ 1;
and the computations were performed for one value of time, namely for t = 0.01. These computations were
carried out in the coupled theory (s0 = m = 0), in Lord–Shulman theory (m = 1, m = 0, s0 = 0.02) and in
Green–Lindsay theory (s0 = m = 0, m = 0.03), when the medium is a perfect electric conductor. The numer-
ical values of the temperature, displacement components and stress components are obtained and repre-
sented graphically for these theories. The results are shown in Figs. 1–6. The graph shows the three
curves predicted by the three different theories of thermoelasticity.

The phenomenon of finite speeds of propagation is manifested in all these figures. This is expected, since
the thermal wave travels with a finite velocity. It should be mentioned in Fig. 1 that the effects of the heating
by a thermal shock on x = 0 of the half space remain in a bounded region of space in the two generalized
theories and does not reach infinity instantaneously. This is not the case when using the equations of cou-
pled thermoelasticity theory where the response to thermal disturbance reaches infinity instantaneously.

The presence of the magnetic field which acts to the perfect conducting elastic medium raises the velocity
of the dilatational elastic waves from b0 to c0 ¼ ðb2

0 þ a20Þ
1=2, the modified electromagnetic elastic wave is
0
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Fig. 1. The temperature distribution.
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Fig. 2. The horizontal displacement distribution.
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Fig. 3. The vertical displacement distribution.
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Fig. 4. The stress component distribution.
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Fig. 5. The stress component distribution.
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Fig. 6. The stress component distribution.
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Fig. 7. The effect of the magnetic field on the stress distribution.
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Fig. 8. The effect of the magnetic field on the displacement distribution.
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propagated with velocity c0, and that is, with the same velocity as the modified elastic wave that produces a
jump in stress (Figs. 7 and 8).
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