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Abstract

A model of the equations of generalized magneto-thermoelasticity in a perfectly conducting medium is given. The
formulation is applied to generalizations, Lord—Shulman theory with one relaxation time and the Green—Lindsay the-
ory with two relaxation times, as well as to the coupled theory.

Laplace transforms and Fourier transforms techniques are used to get the solution. The resulting formulation is used
to solve a specific two-dimensional problem. The inverses of Fourier transforms are obtained analytically.

Laplace transforms are obtained using the complex inversion formula of the transform together with Fourier expan-
sion techniques.

Numerical results for the temperature distribution, thermal stress and displacement components are represented
graphically. A comparison was made with the results predicted by the three theories.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The classical uncoupled theory of thermoelasticity predicts two phenomena not compatible with physical
observations. First, the equation of heat conduction of this theory does not contain any elastic terms. Sec-
ond, the heat equation is of a parabolic type, predicting infinite speeds of propagation for heat waves.

Boit (1956) introduced the theory of coupled thermoelasticity to overcome the first shortcoming.
The governing equations for this theory are coupled, eliminating the first paradox of the classical theory.
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Nomenclature
Ay U Lame’s constants
0 density
Cg specific heat at constant strain
t time
T absolute temperature
Ty reference temperature
o components of stress tensor
e components of strain tensor
u; components of displacement vector
k thermal conductivity
Uo magnetic permeability
&o electric permeability
2
at = ”OTHO, Alfen velocity
2 _ 1y
c = i light speed
02
o =1+3
% = “%, speed of propagation of isothermal elastic waves
2
< = fy + a
¢y = \/%, velocity of transverse waves
Y
o=
2 =9
o = aff?
C
"o 3
To relaxation time
e dilation
Y = 34+ 2P
é - PéE

However, both theories share the second shortcoming since the heat equation for the coupled theory is also
parabolic.

Two generalizations to the coupled theory were introduced. The first is due to Lord and Shulman (1967)
who obtained a wave-type heat equation by postulating a new law of heat conduction to replace the clas-
sical Fourier’s law. Since the heat equation of this theory is of the wave-type, it automatically ensures finite
speeds of propagation for heat and elastic waves. The remaining governing equations for this theory,
namely, the equations of motion and constitutive relations, remain the same as those for the coupled
and the uncoupled theories.

The second generalization to the coupled theory of elasticity is what is known as the theory of thermo-
elasticity with two relaxation times or the theory of temperature-rate-dependent thermoelasticity. Miiller
(1971) in a review of the thermodynamics of thermoelastic solids, proposed an entropy production inequal-
ity, with the help of which he considered restrictions on a class of constitutive equations. A generalization
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of this inequality was proposed by Green and Laws (1972). Green and Lindsay (1972) obtained an explicit
version of the constitutive equations. These equations were also obtained independently by Suhubi (1973).
This theory contains two constants that act as relaxation times and modify all the equations of the coupled
theory, not only the heat equation. The classical Fourier’s law of heat conduction is not violated if the med-
ium under consideration has a center of symmetry. Erbay and Suhubi (1986) studied wave propagation in a
cylinder. Ignaczak (1985) studied a strong discontinuity wave and obtained a decomposition theorem
(Ignaczak, 1978). Ezzat (1995) has also obtained the fundamental solution for this theory.

The foundations of magnetoelasticity were presented by Knopoff (1955) and Chadwick (1957) and devel-
oped by Kaliski and Petykiewicz (1959).

An increasing attention is being devoted to the interaction between magnetic field and strain field in a
thermoelastic solid due to its many applications in the fields of geophysics, plasma physics and related topics.
In all papers quoted above it was assumed that the interactions between the two fields take place by means of
the Lorentz forces appearing in the equations of motion and by means of a term entering Ohm’s law and
describing the electric field produced by the velocity of a material particle, moving in a magnetic field.

Many authors have considered the propagation of electromagneto-thermoelastic waves in an electrically
and thermally conducting solid. Paria (1962) discussed the propagation of plane magneto-thermoelastic
waves in an isotropic unbounded medium under the influence of a uniform thermal field and with a magnetic
field acting transversely to the direction of the propagation. Paria used the classical Fourier law of heat con-
duction, and neglected the electric displacement. Wilson (1963) extended Paria’s results by introducing a com-
ponent of the magnetic field parallel to the direction of the propagation. A comprehensive review of the earlier
contributions to the subject can be found in Paria (1967). Among the authors who considered the generalized
magneto-thermoelastic equations are Nayfeh and Namat-Nasser (1972) who studied the propagation of plane
waves in a solid under the influence of an electromagnetic field. They obtained the governing equations in the
general case and the solution for some particular cases. Choudhuri (1984) extended these results to rotating
media. Sherief and Ezzat (1996) solved a thermal shock half-space problem using asymptotic expansions.
Lately, Ezzat (1997a,b) solved problems in a perfectly conducting medium, and Ezzat et al. (2000, 2001
and 2002) studied the propagation of plane waves in the same medium.

For this model, we solve a specific two-dimensional problem when the bounding surface of the half-space
is taken to be rigid in x direction and no displacement in y direction. A thermal shock acts on a band of
width 2a centered around the y-axis on the surface of the half space and is zero everywhere else. A magnetic
field with constant intensity acts normal to the bounding plane.

2. Formulation of the problem

We shall consider a thermoelastic medium of perfect conductivity permeated by an initial magnetic field
H = (0,0, Hy). This produces an induced magnetic field 2 = (0,0, /) and induced electric field £ = (£}, E>,0),
which satisfy the linear equations of electromagnetism and are valid for slowly moving media of perfect
electrically conductivity (o¢ — o) (see e.g. Ezzat, 1997a,b):

curlh = J + &kE, (1)
curl E = —ph, (2)
E= _IMO(U/\H)a (3)
divh = 0. 4)

These equations are supplemented by the displacement equations of the theory of elasticity, taking into
account the Lorentz force

aij; + o) NH) = pUs, (5)
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and the heat conduction equation (see e.g. Ezzat and El-Karamany, 2002).
kT,i,- = pCE(T + ‘L'()T) + ))T()(ékk + WZ‘L'()ékk) — (Q + MTOQ), (6)

where m is constant.
The constitutive equation

0y = Aewdy + 2ue; — y T oy, .
where
T=T-T,+7, o
and strain—displacement relations
1
&ij = 5 (Ui,j + U”) (9)

Together with the previous equations, constitute a complete system of generalized magneto-thermoelastic-
ity for a medium with a perfect electric conductivity. Furthermore, it should be noted that the correspond-
ing expressions for generalized magneto-thermoelasticity with one relaxation time deduced by setting m = 1
and v =0, while for generalized magneto-thermoelasticity with two relaxation times deduced by setting
m =0, as well as for coupled theory by setting v =17 = 0.

In these equations, a dot denotes differentiation with respect to time, while a comma denotes material
derivatives. The summation notation is used. We shall consider only the simplest case of the two-dimen-
sional problem. We assume that all causes producing the wave propagation is independent of the variable
z and that waves are propagated only in the xy-plane. Thus, all quantities appearing in Egs. (1)-(9) are
independent of the variable z. Then the displacement vector U has components [u(x, y, ), v(x, y, t),0].

Assume now that the initial conditions are homogeneous, then relation (1)—(3) yield (see e.g. Ezzat and
Othman, 2000).

J =curlh — &E, (10)
E:HOHO(fbailaO% (11)
h = —H,(0,0,e). (12)

Expressing the components of the vector J in terms of displacement, by eliminating from Eq. (1) the quan-
tities 4 and E and introducing them into displacement Eq. (5), Maxwell’s equations become

J = curlh — E, (13)
h=—(0,0,¢), 15
(
where e = (% + g-;), the equations of motion have the form
du  u v o0 %0
2 0u  Ou 2 9V o0 OO
b ox? + 02 =) 0x0y b <6x +y 6x6t> ot (16)
v v GRY o0 %0
2 0v  dw 2 oY, 0N _ . 1
Faitam TP —Dag,—F <6x + D@y@t) b, (17)

in addition, the components of the stress are

261/[

ru= i B-25 - P00, (18)
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w=(%-) Wav B<9+ %5 (18b)
o ou v o0
- <ﬂo—2>(a+@) #(0+05): (15¢)
Ou Ov
o= (345 (18d)
0y =0, =0. (18e)

The heat equation
#9+a%
oz 0y?

These equations will be supplemented with appropriate boundary conditions relevant to the particular

application under consideration as will be seen.
In the preceding equations, the following non-dimensional variables are used:

0 + 100 + &(é + mree) — (O + mr,0). (19)

x=cofyx, y=conyy, u=-cong, v=conyt, t= c(z)not/, T= c(z)nor’,
- (T =T)) - p0 K _F oy

- - ) - Tr E ) Oij =
noHoco’ pcy kTocin} Hy’ uoHoco oo

where the dashed quantities denote dimensional variables and it was canceled in the equations for
convenient.

3. Formulation in the Laplace transform domain

We will apply Laplace transform defined as

= [ rtera

hence, the above equations will take the forms

P - >82§yﬁ2<1+vs>%aos2a7 (20)
g al’ HE D T = @1
?;Jrng (s +5710)0 + &(s + s”mto)e — (1 + m1ys)0, (22)
@Fﬁﬁ”(%_m%—ﬁu+ma (23)
7= (B~ D50~ B~ 1+ )0 (24)
6= = (B3 — )Ct+gjﬁ%1+mw, (25)

_ ou Ov
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4. Formulation in the Fourier transforms domain

We will apply Fourier transform defined as

f(q) = \/ﬁ/ e’ f(y)dy,

where
—lql

=== [ e

Then, the last equations will be in the following forms:
GRTY ov* o0

2 (e Y B T A o _

B a2 (g~ 4 ops”)u" —ig(p~— 1) o po(1 4+ vs) o 0,

o’ ) e s o ., -

o2 _(qﬁ =+ s )U _lq(ﬂ _l)a—i_lqﬁ (1+US)0 _Oa

0’0", - o . .

P (g" + s+ 1057)0 — es(1 + mrps) o +iges(1 4+ mtys)0" + (1 + m1os)Q =0,

T = By . (ﬂo 2)v° ﬁ2(1+us)é*,
Gy = ( 3—2)66 +igh — B (1 + vs)0',

L (ana
Ty = dy 0Ox/)’

Now, we will apply the following Fourier transforms without heat source:

2 o0
i (p,q,s) = \/;/0 " (x,q,s) cos pxdx,
2 [ .
U;(p,gq,5) = \/;/0 " (x, q,s) sin pxdx,
. 2 >, .
0,(p,q,s) = \/;/0 0 (x,q,s) sin pxdx,

where

' (x,q.5) = \/g / :(p.g.5) cos prdp,
v (x,q,s \/ / *(p.q.5) sinprdp,
0" (x,q,s \/7/ 9 (p,q,s)sin pxdp.
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Hence, we obtain
P8 + aos” + ¢l +igp(B — 1)7; + fp(1 + vs)0;
f =B + (B — 1) + F(1+ vs)0],
. 2 —x 2 2 2 n21% 202 n* 2 ¢
igp(f” — D)a; + [p” +o0s” + ¢ B0 +1F7q(1 +vs)0, = —/—pvy,

. —% 2 —x
es(1 4+ mros)pu; +iges(1 + mtos)v: — [p* + ¢ + 5 + 105°]0, = —\/:pﬁo,
i

where

— /% aa* 07 ,S e Tl 0 *
uo :%’ 1)0:1_) (O,q,S) and 00:79 (07%5)-

Solving the above equations, we get

— \/§|:p u + Uy + us
u. = — )
TP +pt pPPAp P A

where

- Inp! — lopt + 11
P =P — i)’

"y = Inps — lops + i
P =) —p)’

s — Inpsy — lopy + i
(Pt — P33 —p3)’

— %
Iy = —Uy,

s’ (B2 — 1)

Lo = = (8™ + B¢° + 05 + )it + iq( a— (B°¢* — 610285 — qz))l%

(5 + 53)

ig(p* -1
lis = —(205% (33 + q) + B*q7 (816285 + 65 + ¢°) )ity + % (05*(33 + q)

+ B (816285 + 33 + 4°))Ty + 01 (05> (03 + q) + Bq7 (818285 + 03 + ¢7)) 0y,
U_\/»Lvlp +szp27
+P1 P +P21 p°+p3

by = 121}7‘1‘ - lzzP% + I
(3 — )Pz —p1)’

by = 121}73 - lzzp% + I
(Pi =) —p3)

by = lzlpg - lzng + I
(Pi = PP = p3)

where

6325

(37)
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Iy = g,
: 2\ — /% c(()Sz 2 2 2\ | =% . Ak
122 = lq(l — ﬁ )uo + 7— (ﬁ q — 51528S — 63 — 3q ) Uy +1q5190,
Ly = —ig(B* (816285 + 03 + ¢°) — &5 — )ty
0982 (33 + ¢*
+ ( 05*( 32 7’)
B
+ (iotgs*qd1 + iqd1 (B (010285 + 35 + ¢°) — 83))0;,

— (B (810265 + 05 + ¢*) — 810285 — 2(J5 + qz))) Uy

and

— % 2 le 02p 93])
es:\[[p - - , 39
TP +p Py PR )

where

o 131}7? - 13217% + I3

" - -
0, — 131}72 - 132[7% + I3
(Pi =) 03 —p3)’
0, — l31p§ - 13219% + I3 ,
(Pt = p3)(P3 — P3)
I = 0,,

as* (B> + 1)
I

. 1 B
I33 = —ses(0tps® + qz)z}g‘ + igsed, (s + qz)v0 + F (oc(z)s4 + uosz(ﬁz(élézss +¢*) + qz))eo.

L3y = —esdilly + iesdrqT;, + ( + (610285 + 2q2)> @8,

We have already used the following parameters:
P =8’ + ¢,
1 ST a—

1
py=5[L— VI —4LM],

aps? )
= 7+(5152SS+53+2q ) ,

2 S 2
M= [%4—&(6]52&?4—53 +q2)],

Sy=1+vs, 0r=1+19ms and &5 =s+ 1os°.

Now, by using the following integrals:

00 —kx o0 .
COoS px e psin px T p
———dp==-— and / ———dp==¢e7",
/0 PR T2k o PrRE T2
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we get

_ u o, U2 _ us _

”*(xa%s):_e Pr 4 —e P+ —e p3x,
)4 V%) Ps3

T(x,q,s) = v1€7P + 167" + v,

é* (x, q, S) = Hle_”lx —+ 926_‘”2)( —+ 93C_p3x.

We can get the constitutive equations as following:
0o (x,4.5) = = i]ﬂéu/ +ig(By = 2); + 010,)e,
Tylng:s) = =D [~ 2wy —igfyp + Fo100e 7"
0..(x,q,5) = Z[(ﬂo 2)u; +iq(By — 2)v; + F13:0,)e ",

3 ig
xv )C q’ Z

—Uuj+pvj|€
i=1 .I

5. Application

We consider the problem of a half-space, which is defined in the region Q defined as following:

Q={(x,y,2): 0<x<00,—00<y<00,—00<z< 00}
We consider a thermal chock in the side of the region at x =0, then
0(0,y,2) = H(D)F (y)-
After applying Laplace and Fourier transforms as we defined before, we obtain
—x F*
0,(0,q,s) = o
We consider the body satisfies the following mechanical conditions:
v(0,y,6)=0, and 4 (0,y,1) =0.
After applying Laplace and Fourier transforms, we obtain
v, =0°(0,q,5) =0,

. ou(0,q,s)
Yo =7

=0.

That completes the solution of the Egs. (40)—(42) in the transformed domain as following:

Uy _ U _, U _
(x q,s ) —e P1X+_e Pax + ¢ P3X7
P P2 D3

6327

(43)

(44)

(45)
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where
- Inopt — Liaopt + Liso
P —p)p3—p1)
1y — lllopg - llzop% + 1130
Pt =3 —m)
iy = Inops — Liaop3 + Liso
P —p)p —p3)

1110 :07

*

F
Lo = 01(fPq* + 53)77

F
l130 = 51(050S2(53 +q)+ ﬁ2q2(51528s + 05+ 6]2)) 5
U (x,q,5) = vige P + vyge P2 + v30e P,
where

- Lopt — Inopt + o
(P3—r)w3—p1)
by = Lops — Inops + 12307
(Pt —P3)(3 — P3)
by = 1210p§ - lzzopg + 1230’
(i — ) — ) (52)
l10 =0,

"
Iy = iqél -
Ky
"

lr3o = (iotgs’qd1 + igd, (B (010285 + 03 + ¢*) — 03)) it
0°(x,q,s) = 0106 ™" + Oxpe 7" + O3e 7,

. l310p‘1‘ - l320p% + L339

010 - )
(3 — )3 — p1)
0y — 31095 — L320P3 + 1330
e -p)ps—p)
_ I310p% — Lyopi + L350
O30 = 2 2\ (2 2\
(Pl _P3)(P2 —Ps)
F*
[310 = —,
s

2+ 1 F*
L0 = (% + (610285 + 2(12)) PR

*

s’

l330 = (OC%S4 + OCoSz(ﬁz(élazﬁS + qz) + qz))
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The constitutive equations take the forms
3

0, (x,q,8) = — Z[ﬂé“jo +ig(B5 — 2)vj0 + B2010,]e 77, (53)
J=1
3

Gy, (6. q,5) = — O (B3 = 2w — igByvn + f2010,0)e P, (54)
j=1
3

5%, q,5) = — 2mﬁ—3w+m%—nm+ﬁm%ww, (55)

3

Xq, Z

J=

—ujo +pvjo|e . (56)

J

6. Inversion of the Laplace transform

To obtain the solution of the problem in the physical domain (x, y, #), we have to invert the iterated trans-
forms in Egs. (50)—(56).

These expressions can be formally expressed as functions of x and the parameter of the Fourier and
Laplace transforms ¢ and s of the form f"(x,q,s) (see e.g. Honig and Hirdes, 1984).

First, we invert the Fourier transform using the inversion formula given previously. This gives the
Laplace transform expression £ (x,y,s) of the function f{x,y,?) as

f(x,p,s) m/ T f(x,q,5)dg

- \/;/0 (cos(gy)f. +isin(qv)f,)dq,

where f; and f, denote the even and the odd parts of the function f~(x,q,s) respectively.

We shall now outline the numerical inversion method used to find the solution in the physical domain.
For fixed values of x, y, and ¢ the function inside braces in the last integral can be considered as a Laplace
transform g(s) of some function g(¢).

The inversion formula for the Laplace transform can be written as

1 c+ioo
w=f/ e"g(s)ds,

2mi —ico

where c is an arbitrary real number greater than all the parts of the singularities g(s). Taking s = ¢ + iy, the
above integral takes the form

ct

g(t) = I / ei’yg(c +iy)dy.

Expanding the function /(z) = exp(—ct)g(¢) in a Fourier series in the interval [0,2L], we obtain the approx-
imate formula.

(1) = g.(t) + Ep,
where

1

2..(0) :500+ch for 0 <t < 2L, (57)
k=1
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and
ct .
e = Rele g e + iknt/ L) b

Ep, the discretization error, can be made arbitrary small by choosing ¢ large enough.
Since the infinite series in Eq. (57) can be summed up to finite number N of terms, the approximate value
of g(t) becomes

1 N
gN(t):§c0+ch for 0 < ¢ < 2L. (59)
k=1

Using the above formula to evaluate g(7), we introduce a truncation error E which, must be added to the
discretization error to produce the total approximation error.

Two methods are used to reduce the total error. First the “Korrecktur” method is used to reduce the
discretization error. Next, the ¢ algorithm is used to reduce the truncation error and hence to accelerate
convergence.

The Korrecktur method uses the following formula to evaluate the function g(z):

8(1) = g (1) — g (2L + 1) + E},
where the discretization error |E})| < |Ep|. Thus, the approximate value of g(#) becomes

gk (1) = gy (1) — e gy (2L +1). (60)
N’ is an integer such that N’ < N.

We shall now describe the ¢-algorithm that is used to accelerate the convergence of the series in Eq. (59).
Let N=2¢g+ 1 where ¢ is a natural number, and let

m
Sm = E Ck
k=1

be the sequence of partial sums of Eq. (59). We define the e-sequence by

Eom = 0 81,m = 07

and
Epime1 +1
Ep+lm = polmil T2 s p=1,2,3,...
Epm+1 — Epm
it can be shown that the sequence ¢; 1,63 1,51, - - - » én.1, cOnverges to fix, y,¢) + Ep — cof2 faster than the se-

quence of partial sums s,, (m=1,2,3,...).

The actual procedure used to invert the Laplace transform consists of using Eq. (60) together with the
e-algorithm. The values of ¢ and L are chosen according to the criteria outlined in Honig and Hirdes
(1984).

7. Numerical results

The function F(y) representing the thermal shock was taken as F(y) = H(a — |y|) which gives

; 2sin(qa

where H denotes Heaviside step function.
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The copper material was taken for chosen purpose of numerical evaluations. The constant of the prob-
lem were taken as in Ezzat (2004):

k=386 N/Ks, or=178x10°K", Cz=23831m?/Ks* #,=8886.73m/s’
n=1386x10"N/m?> A1=776x10"N/m?> ¢ =139x10°, p==8954kg/m’
g = (10)7/(36n) C?/Nm?, p,=4nx 107 Nms?/C>, Hy=1C/ms, 15=0.02,
=003, T,=293K, f;=201, =35 £=00168, a=1,

and the computations were performed for one value of time, namely for # = 0.01. These computations were
carried out in the coupled theory (1o =v =0), in Lord-Shulman theory (m =1, v=0, 19 =0.02) and in
Green—Lindsay theory (1o = m = 0, v = 0.03), when the medium is a perfect electric conductor. The numer-
ical values of the temperature, displacement components and stress components are obtained and repre-
sented graphically for these theories. The results are shown in Figs. 1-6. The graph shows the three
curves predicted by the three different theories of thermoelasticity.

The phenomenon of finite speeds of propagation is manifested in all these figures. This is expected, since
the thermal wave travels with a finite velocity. It should be mentioned in Fig. 1 that the effects of the heating
by a thermal shock on x = 0 of the half space remain in a bounded region of space in the two generalized
theories and does not reach infinity instantaneously. This is not the case when using the equations of cou-
pled thermoelasticity theory where the response to thermal disturbance reaches infinity instantancously.

The presence of the magnetic field which acts to the perfect conducting elastic medium raises the velocity
of the dilatational elastic waves from f to ¢y = (f; + ocg)l/ ?, the modified electromagnetic elastic wave is

0.25
0.2
0.15 \x\ —— coupled theory
o ™\, --- Lord-Shulman theory
0.1 "\.} ------ Green-Lindsay theory
0.05
0
0
Fig. 1. The temperature distribution.
0.0004 7
0.0002 1 (L
0 T T T T T X
= 1 2 3
8 -0.0002]
= —— coupled theory
; -0.0004 1 — —— Lord-Shulman theory
----- Green-Lindsay theory
-0.00061
-0.0008 1
<0.001 -

Fig. 2. The horizontal displacement distribution.
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0.000011
0
-0.000011
-0.00002-

>
-0.00003-
-0.00004-
-0.000051
-0.00006-

—— coupled theory
—-— Lord-Shulman theory
- Green-Lindsay theory

Fig. 3. The vertical displacement distribution.

0
-0.51
% 1 —— coupled theory
© - —— Lord-Shulman theory
----- Green-Lindsay theory
1.5
24
Fig. 4. The stress component distribution.
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Fig. 6. The stress component distribution.
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Fig. 7. The effect of the magnetic field on the stress distribution.

u
2.00E-06

0.00E+00
-2.00E-06]
-4.00E-06
-6.00E-06
-8.00E-06
-1.00E-05
-1.20E-05
-1.40E-05

Fig. 8. The effect of the magnetic field on the displacement distribution.

propagated with velocity ¢, and that is, with the same velocity as the modified elastic wave that produces a
jump in stress (Figs. 7 and 8).
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